Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Further tests of the Argonne 3.3-MJ pulsed superconducting coil and its nonmetallic cryostat

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim, S.H. ; Argonne National Laboratory, Argonne, IL, USA ; Krieger, C. ; McGhee, D.G.

A split-pair superconducting coil of the Pulsed Cable Test Facility (PCTF) at Argonne National Laboratory (ANL) has been successfully tested both in dc and pulsing modes. At a peak operating current of 11 kA, the peak magnetic field and stored energy of the coil are 6.5 T and 3.3 MJ, respectively. In the pulsing test, the coil was charged to 10.55 kA in 1.0 s and discharged to zero in 1.6 s. The ac losses of the coil in this mode were 7.5 kJ/pulse. The coil is composed of two solenoids each with 22 layers and 9.14 turns per layer. The cable for the coil consists of 24, 19-strand NbTi subcables. The nonmetallic cryostat of the PCTF consists of two fiberglass reinforced polyester resin vessels. Developmental high current conductors can be tested under the PCTF pulsing magnetic fields in a form of pancake coils or as a short sample for the studies of pulsing effects.

Published in:

Magnetics, IEEE Transactions on  (Volume:19 ,  Issue: 3 )