By Topic

Linear algebra approach to neural associative memories and noise performance of neural classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cherkassky, V. ; Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA ; Fassett, K. ; Vassilas, N.

The authors present an analytic evaluation of saturation and noise performance for a large class of associative memories based on matrix operations. The importance of using standard linear algebra techniques for evaluating noise performance of associative memories is emphasized. The authors present a detailed comparative analysis of the correlation matrix memory and the generalized inverse memory construction rules for auto-associative memory and neural classifiers. Analytic results for the noise performance of neural classifiers that can store several prototypes in one class are presented. The analysis indicates that for neural classifiers the simple correlation matrix memory provides better noise performance than the more complex generalized inverse memory

Published in:

Computers, IEEE Transactions on  (Volume:40 ,  Issue: 12 )