By Topic

On the approximation of NP-complete problems by using the Boltzmann machine method: the cases of some covering and packing problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. Zissimopoulos ; Paris Univ., Orsay, France ; V. T. Paschos ; F. Pekergin

A Boltzmann machine architecture to solve the problems of maximum independent set, set partitioning, clique, minimum vertex cover, minimum set cover, and maximum set packing is described. The authors evaluate the maximum and the average error of the method where the error is defined as the ratio of the cardinality of the obtained solution for an instance with respect to the optimal one. The results are compared with those obtained from the implementation of the heuristic described by D.S. Johnson (1974). The model treats the general case of all these problems that is the case when costs are associated with the data (vertices or subsets). The unweighted case becomes a particular case in this approach. It is shown that the model finds optimal solutions for a large percentage of the treated instances and provides a good performance ratio for the rest

Published in:

IEEE Transactions on Computers  (Volume:40 ,  Issue: 12 )