By Topic

Computer analysis of transient heat transfer from coated surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Menard, A. ; Saginaw Valley State College, University Center, Michigan ; Holmes, D.

The transient thermal response of internally heated, coated surfaces in contact with liquid helium was investigated with a previously developed computer model. The coatings were found to affect the time required to initiate film boiling or to quench a superconductor in the substrate. The energy which can be absorbed without an unacceptably large temperature rise depends most strongly upon the coating thermal property group (kpCp)½and on the peak nucleate boiling heat flux. Dielectric materials for electrical insulation usually have low thermal property group values, but a new class of ceramic materials shows great promise for application with superconducting devices aselectrical insulations with good thermal properties. Coating materials with thermal property group values greater than that of OFHC copper at liquid helium temperatures provide the same thermal stability as a bare copper surface exposed to the helium bath. Possible applications of the new materials to potted windings are also discussed.

Published in:

Magnetics, IEEE Transactions on  (Volume:19 ,  Issue: 3 )