By Topic

Constraint networks in vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Suter, D. ; Dept. of Comput. Sci. & Comput. Eng., La Trobe Univ., Bundoora, Vic., Australia

Applications in machine vision of constraint networks based on an augmented Lagrangian formulation are discussed. Only those applications that have a fundamental significance are addressed. The first of these provides a generalization of the Harris coupled depth-slope analog model of visual reconstruction. Because of the generality of the approach, one can derive many more alternative structures, and the mathematical setting places this approach within the bounds of mixed finite element theory. This offers many advantages in terms of the associated mathematical theory and implementation on digital machines. The second use is in data fusion, which is a crucial task for systems using multiple sensors or methods of analysis of data

Published in:

Computers, IEEE Transactions on  (Volume:40 ,  Issue: 12 )