By Topic

A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bramble, J. ; Cornell University and Brookhaven National Laboratory ; Pasciak, J.

We consider the linearized scalar potential formulation of the magnetostatic field problem in this paper. Our approach involves a reformulation of the continuous problem as a parametric boundary problem. By the introduction of a spherical interface and the use of spherical harmonics, the infinite boundary condition can also be satisfied in the parametric framework. The reformulated problem is discretized by finite element techniques and a discrete parametric problem is solved by conjugate gradient iteration. This approach decouples the problem in that only standard Neumann type elliptic finite element systems on separate bounded domains need be solved. The boundary conditions at infinity and the interface conditions are satisfied during the boundary parametric iteration.

Published in:

Magnetics, IEEE Transactions on  (Volume:18 ,  Issue: 2 )