By Topic

The micromagnetic propertis of high-coercivity metallic thin films and their effects on the limit of packing density in digital recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tu Chen ; Xerox Corporation Palo Alto Research Centers, Palo Alto, CA

The micromagnetic structures of the high-coercivity, isotropic, and high-squareness thin films of sputtered Co-Re have been investigated using transmission electron microscope (TEM) Lorentz imaging and electron deflection methods. From the behavior of the magnetic ripple structure under applied field and the configuration of the local surface fields observed in these experiments, the existence of magnetic clusters in these films was verified. Based on the interpretation of the field dependence of the ripple formation and the hysteretic properties of the film, it is concluded that the formation of the magnetic clusters is a spontaneous process resulting from intercrystalline interactions and local inhomogeneities in the anisotropy. The effects of such cluster formation on longitudinal magnetic recording were investigated. The results show that the reduction of dipole energy at the transition region between two oppositely magnetized regions can be achieved by a stepwise rotation of the magnetization vector of an individual cluster in the form of a vortex. This type of rotation creates a finite transition length which is limited by the size of the magnetic cluster of the film. Consequently, it is concluded that the maximum packing density for saturation recording in these types of films would be less than that predicted by the phenomenological equation, which was derived based solely on considerations of the demagnetization field and the coercivity of the film.

Published in:

IEEE Transactions on Magnetics  (Volume:17 ,  Issue: 2 )