Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Theoretical analysis of longevity testing on bubble memory devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Ohteru, S. ; Waseda University, Tokyo, Japan ; Kato, T. ; Watanabe, Y. ; Watanabe, Y.
more authors

Theoretical results of magnetic bubble device long-term reliability testing are reported. The bubble during propagation along Permalloy tracks is represented by a simple, one-dimensional stochastic model. An equation to describe fluctuation in cylindrical bubble radius is approximated in the Langevin type stochastic differential equation, in which a set of small effects, such as interaction among bubbles and crystal nonuniformity, are considered as a white noise forcing term. Estimating the average time to bubble annihilation or runout (bubble memory mean time to failure) is reduced to a level-crossing problem for a random process. Calculated bias field margin degradation shows a qualitative agreement with experimental results for an actual bubble device. Bubble material parameters for obtaining maximum operation time are suggested.

Published in:

Magnetics, IEEE Transactions on  (Volume:16 ,  Issue: 6 )