By Topic

Vapor formation and heat transfer in liquid helium cooling channels under transient and steady state conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hilal, M. ; Michigan Technological University, Houghton, Michigan ; Dawson, J. ; Gonczy, J.D. ; Turner, L.R.
more authors

The recovery of a normal zone produced in a superconducting magnet following a mechanical disturbance depends on the heat transfer rate to the liquid helium cooling channels. One of the factors which affects the heat transfer to the channel is the amount of vapor accumulated in the channel during and following a disturbance. The present work is undertaken to determine the void fraction in a liquid helium channel and to study the effect of the amount of vapor in the channel on the heat transfer characteristics. Heat pulses of 30 to 300 ms duration are introduced into the simulated conductor, and observations are made of the resulting temperature response and of the vapor fraction in the channel. The vapor fraction is determined by means of a capacitance bridge which responds to the small difference in dielectric constant between liquid and vapor helium. For completeness steady state measurements of temperature and vapor fraction are also reported.

Published in:

Magnetics, IEEE Transactions on  (Volume:15 ,  Issue: 1 )