By Topic

Safety systems and structural aspects of superconducting magnets for fusion power reactors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Potential safety systems are examined for superconducting magnets in fusion power reactors. Because of current and voltage limitations, energy removal systems do not appear practical for dumping significant amounts of energy external to the magnet for designs currently envisioned. Some type of Temperature Equalization System appears necessary to minimize temperature inhomogeneities if energy is dumped internally during a quench or other accident situation since inhomogeneities may cause electrical breakdown and/or structural damage. Large detection nets appear necessary to detect potential "hot spots" before they can damage the magnet. Qualitative fault/event trees have been developed for some potential accident pathways; however, many years will be required before quantitative risk assessment studies can be made.

Published in:

Magnetics, IEEE Transactions on  (Volume:13 ,  Issue: 1 )