Cart (Loading....) | Create Account
Close category search window
 

Some experiments and considerations on the behavior of a new magnetic frequency tripler with bridge-connected reactor circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bessho, K. ; Kanazawa University, Kodatsuno, Kanazawa, Japan ; Yamada, S. ; Sudani, T. ; Kanamaru, Y.

Some magnetic frequency triplers using the saturation characteristics of an iron core have been reported. In this paper a new frequency tripler which is based on the bridge-connected reactor circuit is proposed. The features of this tripler are that an applied source is single phase and ferro-resonance circuits are formed in both the output and input side. Consequently, the circuit becomes very simple, the power factor is greatly improved and the triple frequency output voltage holds constant. This paper presents some experiments and considerations on a new tripler. Moreover, various circuits which have equivalent operating characteristics are proposed.

Published in:

Magnetics, IEEE Transactions on  (Volume:12 ,  Issue: 6 )

Date of Publication:

Nov 1976

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.