By Topic

Magneto-optic insulators utilizing the optical activity of Co++(Td)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahrenkiel, R. ; Eastman Kodak Company, Rochester, New York ; Coburn, T.

Large magneto-optic effects are associated with the crystal field transitions of Co++(Td) in a variety of spinel oxides. In the oxides, the F and P crystal field bands peak at about 1.5 and 0.6 μm, respectively. Many iron-containing quaternary compounds (CoTxFe2-xO4) have transition temperatures above ambient. Here, T is a trivalent metal ion such as Cr3+or Rh3+. Room-temperature magneto-optic measurements on a number of these compounds indicate peak Faraday effects in the range of 0.5 × 105to 1.0 × 105(deg/cm) at about 0.6 μm. The Curie temperature may be adjusted by the compositional parameter x and normal remanence of the surface Kerr effects are observed. The latter properties are potentially useful for optical memory devices. These materials are considered for isolation and modulation devices in the 5.0 to 12.0 μm wavelength range.

Published in:

Magnetics, IEEE Transactions on  (Volume:11 ,  Issue: 5 )