By Topic

Electron-beam fabrication of high-density amorphous bubble film devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ahn, K.Y. ; IBM Thomas J. Watson Research Center, Yorktown Heights, New York ; Chang, T.H.P. ; Hatzakis, M. ; Kryder, M.H.
more authors

A low-temperature, all-vacuum process combined with electron-beam lithography suitable for single-level masking devices using 2-μm diameter amorphous bubble films has been developed. A test vehicle which uses 0.75-μm wide chevrons and 1-μm wide T.I bars in an 8,000- bit chip configuration, resulting in an areal density of 1×107bits/in2, was used. Important process features are found to be: (1) laminated NiFe films to obtain low Hcand high magneto-resistive effect when deposited at low substrate temperature, (2) maintenance of low surface temperature during metallization to preserve the integrity of exposed and developed electron-beam resist pattern, and (3) proper resist profile for ease of the lift-off process. Excellent bubble device operating characteristics have been obtained as a result of uniformity in materials and structure resulting from careful control of fabrication parameters.

Published in:

Magnetics, IEEE Transactions on  (Volume:11 ,  Issue: 5 )