By Topic

New computational approaches for de novo peptide sequencing from MS/MS experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lubeck, O. ; Bioscience Div., Los Alamos Nat. Lab., NM, USA ; Sewell, C. ; Sheng Gu ; Xian Chen
more authors

We describe computational methods to solve the problem of identifying novel proteins from tandem mass spectrometry (tandem MS or MS/MS) data and introduce new approaches that will give more accurate solutions. These new approaches integrate chemical information and knowledge into a graph-theoretic framework. Two sources of chemical information that we investigate are mass tagging and dissociation chemistry in the tandem MS process itself. We describe machine learning techniques that are used to classify peaks according to ion types based on known dissociation chemistry. We describe the algorithms that are implemented in a software code called PepSUMS. Using PepSUMS, we give results on the effectiveness of the new methods on the ultimate goal of improved protein identification.

Published in:

Proceedings of the IEEE  (Volume:90 ,  Issue: 12 )