By Topic

Accurate refractive index profiling in a graded-index plastic optical fiber exceeding gigabit transmission rates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ishigure, T. ; Fac. of Sci. & Technol., Keio Univ., Yokohama, Japan ; Tanaka, S. ; Kobayashi, E. ; Koike, Y.

An optimum index profile offering the highest bit rate communication was formed in a poly methyl methacrylate (PMMA)-based graded-index plastic optical fiber (GI-POF) by modifying the polymerization process. The interfacial-gel polymerization process we have proposed to fabricate the PMMA-based GI-POF is capable of forming a nearly optimum refractive index profile. However, the theoretically calculated bandwidth from the measured index profile was reduced compared with a GI-POF with an optimum profile. In this paper, we report how to obtain a PMMA-based GI-POF having exactly the optimum index profile. The bandwidth of this ideal GI-POF was experimentally measured and a very high value of 2.88 GHz, even for a 150-m fiber length, was confirmed. The calculated bandwidth agreed well with the experimentally measured one. These results indicate that very low modal dispersion can be expected in a GI-POF fabricated by the modified interfacial-gel polymerization process.

Published in:

Lightwave Technology, Journal of  (Volume:20 ,  Issue: 8 )