By Topic

Recursive array layouts and fast matrix multiplication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Chatterjee ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; A. R. Lebeck ; P. K. Patnala ; M. Thottethodi

The performance of both serial and parallel implementations of matrix multiplication is highly sensitive to memory system behavior. False sharing and cache conflicts cause traditional column-major or row-major array layouts to incur high variability in memory system performance as matrix size varies. This paper investigates the use of recursive array layouts to improve performance and reduce variability. Previous work on recursive matrix multiplication is extended to examine several recursive array layouts and three recursive algorithms: standard matrix multiplication and the more complex algorithms of Strassen (1969) and Winograd. While recursive layouts significantly outperform traditional layouts (reducing execution times by a factor of 1.2-2.5) for the standard algorithm, they offer little improvement for Strassen's and Winograd's algorithms. For a purely sequential implementation, it is possible to reorder computation to conserve memory space and improve performance between 10 percent and 20 percent. Carrying the recursive layout down to the level of individual matrix elements is shown to be counterproductive; a combination of recursive layouts down to canonically ordered matrix tiles instead yields higher performance. Five recursive layouts with successively increasing complexity of address computation are evaluated and it is shown that addressing overheads can be kept in control even for the most computationally demanding of these layouts.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:13 ,  Issue: 11 )