By Topic

Chaotic simulated annealing with decaying chaotic noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yuyao He ; Coll. of Marine Eng., Northwestern Polytech. Univ., Xi'an, China

By adding chaotic noise to each neuron of the discrete-time continuous-output Hopfield neural network (HNN) and gradually reducing the noise, a chaotic neural network is proposed so that it is initially chaotic but eventually convergent, and, thus, has richer and more flexible dynamics compared to the HNN. The proposed network is applied to the traveling salesman problem (TSP) and that results are highly satisfactory. That is, the transient chaos enables the network to escape from local energy minima and to find global minima in 100% of the simulations for four-city and ten-city TSPs, as well as near-optimal solutions in most of runs for a 48-city TSP.

Published in:

IEEE Transactions on Neural Networks  (Volume:13 ,  Issue: 6 )