Cart (Loading....) | Create Account
Close category search window

Statistical analysis of the parameters of a neuro-genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Castillo-Valdivieso, P.A. ; Dept. of Archit. & Comput. Technol., Granada Univ., Spain ; Merelo, J.J. ; Prieto, A. ; Rojas, I.
more authors

Interest in hybrid methods that combine artificial neural networks and evolutionary algorithms has grown in the last few years, due to their robustness and ability to design networks by setting initial weight values, by searching the architecture and the learning rule and parameters. This paper presents an exhaustive analysis of the G-Prop method, and the different parameters the method requires (population size, selection rate, initial weight range, number of training epochs, etc.) are determined. The paper also the discusses the influence of the application of genetic operators on the precision (classification ability or error) and network size in classification problems. The significance and relative importance of the parameters with respect to the results obtained, as well as suitable values for each, were obtained using the ANOVA (analysis of the variance). Experiments show the significance of parameters concerning the neural network and learning in the hybrid methods. The parameters found using this method were used to compare the G-Prop method both to itself with other parameter settings, and to other published methods.

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 6 )

Date of Publication:

Nov 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.