By Topic

On the discrete-time dynamics of the basic Hebbian neural network node

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zufiria, P.J. ; ETSI Telecomunicacion, Univ. Politecnica de Madrid, Spain

In this paper, the dynamical behavior of the basic node used for constructing Hebbian artificial neural networks (NNs) is analyzed. Hebbian NNs are employed in communications and signal processing applications, among others. They have been traditionally studied on a continuous-time formulation whose validity is justified via some analytical procedures that presume, among other hypotheses, a specific asymptotic behavior of the learning gain. The main contribution of this paper is the study of a deterministic discrete-time (DDT) formulation that characterizes the average evolution of the node, preserving the discrete-time form of the original network and gathering a more realistic behavior of the learning gain. The new deterministic discrete-time model provides some unstability results (critical for the case of large similar variance signals) which are drastically different to the ones known for the continuous-time formulation. Simulation examples support the presented results, illustrating the practical limitations of the basic Hebbian model.

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 6 )