By Topic

Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Hiddabi, S.A. ; Dept. of Mech. & Ind. Eng., Sultan Qaboos Univ., Al-Khod, Oman ; McClamroch, N.H.

We study the problem of tracking control and maneuver regulation control for a nonlinear nonminimum phase control system. First, a tracking controller, consisting of feedforward and static-state feedback, is designed to guarantee uniform asymptotic trajectory tracking. The feedforward is determined by solving a stable noncausal inversion problem. Constant feedback gains are determined based on linear quadratic regulator (LQR) optimization and assumed satisfaction of a robustness inequality. A maneuver regulation controller is obtained from the tracking controller by introducing a suitable state projection that is related to the LQR feedback gains. Properties of the closed loop, including local asymptotic convergence of the transverse errors are described. A multivariable flight control problem is used to demonstrate the approach.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:10 ,  Issue: 6 )