By Topic

Closed-loop compensation of kinematic error in harmonic drives for precision control applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. S. Gandhi ; Dept. of Mech. Eng., Indian Inst. of Technol., Bombay, India ; F. H. Ghorbel

We present nonlinear control algorithms to compensate for kinematic error in harmonic drives, thus forming a solid basis to improve their performance in precision positioning applications. Kinematic error, defined as deviation between expected and actual output positions, influences performance by producing static positioning error and inducing dynamic vibration effects. Its compensation is difficult because of its nonlinear behavior and dependence on drive type, assembly, environmental conditions, and drive load. The Lyapunov-based closed-loop control algorithms presented in this paper compensate for the kinematic error irrespective of its form in setpoint and trajectory tracking applications. Simulation and experimental results obtained with a dedicated harmonic drive test setup verify the effectiveness of the proposed controllers.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:10 ,  Issue: 6 )