Cart (Loading....) | Create Account
Close category search window
 

On the approach of a filtered pulse train to a stationary Gaussian process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A narrow-band process is conveniently characterized in terms of a complex envelope whose magnitude is the envelope, and whose angle is the phase variation of the actual narrow-band process. When the narrow-band process is normally distributed, the complex envelope has the properties of a complex normally distributed process. This paper investigates the approach to the complex normally distributed form of the complex envelope of the output of a narrow-band filter when the input is wide-band non-Gaussian noise of a certain class, and the bandwidth of the narrow-band filter approaches zero. The non-Gaussian input consists of a train of pulses having identical waveshapes, but random amplitudes and phases. While the derivations assume statistical independence between pulses, it is shown that the results are valid for a certain interesting class of dependent pulses. The Central Limit Theorem is proved in the multidimensional case for the output process.

Published in:

Information Theory, IRE Transactions on  (Volume:7 ,  Issue: 3 )

Date of Publication:

July 1961

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.