By Topic

A useful theorem for nonlinear devices having Gaussian inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

If and only if the inputs to a set of nonlinear, zero-memory devices are variates drawn from a Gaussian random process, a useful general relationship may be found between certain input and output statistics of the set. This relationship equates partial derivatives of the (high-order) output correlation coefficient taken with respect to the input correlation coefficients, to the output correlation coefficient of a new set of nonlinear devices bearing a simple derivative relation to the original set. Application is made to the interesting special cases of conventional cross-correlation and autocorrelation functions, and Bussgang's theorem is easily proved. As examples, the output autocorrelation functions are simply obtained for a hard limiter, linear detector, clipper, and smooth limiter.

Published in:

Information Theory, IRE Transactions on  (Volume:4 ,  Issue: 2 )