By Topic

The solution of a homogeneous Wiener-Hopf integral equation occurring in the expansion of second-order stationary random functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

In many of the applications of probability theory to problems of estimation and detection of random functions an eigenvalue integral equation of the type begin{equation} phi(x) = lambda int_0^T K(x - y)phi(y) dy, qquad 0 leq x leq T, end{equation} is encountered where K(x) represents the covariance function of a continuous stationary second-order process possessing an absolutely continuous spectral density. In this paper an explicit operational solution is given for the eigenvalnes and eigenfunctions in the special but practical case when the Fourier transform of K(x) is a rational function of \omega ^2 , i.e., begin{equation} K(x) doteqdot G(s^2) = frac{N(s^2)}{D(s^2)}, qquad s=iomega, end{euation} in which N(s^2) and D(s^2) are polynomials in s^2 . It is easy to show by elementary methods that the solutions are of the form begin{equation} phi(x)= sum C_r e^{-alpha_r x} cos (beta_r x + gamma_r), end{equation} the constants C_r, \alpha _r, \beta _r , and \gamma _r being linked together by the integral equation. It is precisely the labor involved in their determination that in practice often causes the problem to assume awesome proportions. By means of the results given herein, this labor is diminished to the irreducible minimum-the solving of a transcendental equation.

Published in:

IRE Transactions on Information Theory  (Volume:3 ,  Issue: 3 )