By Topic

A 0.487 throughput limited sensing algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We consider Poisson packet traffic accessing a single-slotted channel. We assume the existence of a ternary feedback per channel slot. We also adopt the limited feedback sensing model where each user senses the feedback only while he has a packet to transmit. For this model we develop a collision resolution algorithm with last come-first served characteristics. The algorithm attains the same throughput as Gallager's algorithm without the latter's full feedback sensing requirement. In addition, it is easy to implement, requires reasonable memory storage, induces uniformly good transmission delays, and is insensitive to feedback errors. In the presence of binary (collision versus noncollision) feedback the algorithm may attain a throughput of 0.4493 .

Published in:

IEEE Transactions on Information Theory  (Volume:33 ,  Issue: 2 )