By Topic

A pyramid vector quantizer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The geometric properties of a memoryless Laplacian source are presented and used to establish a source coding theorem. Motivated by this geometric structure, a pyramid vector quantizer (PVQ) is developed for arbitrary vector dimension. The PVQ is based on the cubic lattice points that lie on the surface of an L -dimensional pyramid and has simple encoding and decoding algorithms. A product code version of the PVQ is developed and generalized to apply to a variety of sources. Analytical expressions are derived for the PVQ mean square error (mse), and simulation results are presented for PVQ encoding of several memoryless sources. For large rate and dimension, PVQ encoding of memoryless Laplacian, gamma, and Gaussian sources provides rose improvements of 5.64, 8.40 , and 2.39 dB, respectively, over the corresponding optimum scalar quantizer. Although suboptimum in a rate-distortion sense, because the PVQ can encode large-dimensional vectors, it offers significant reduction in rose distortion compared with the optimum Lloyd-Max scalar quantizer, and provides an attractive alternative to currently available vector quantizers.

Published in:

Information Theory, IEEE Transactions on  (Volume:32 ,  Issue: 4 )