By Topic

An upper bound for codes for the noisy two-access binary adder channel (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Using earlier methods a combinatorial upper bound is derived for|C|. cdot |D|, where(C,D)is adelta-decodable code pair for the noisy two-access binary adder channel. Asymptotically, this bound reduces toR_{1}=R_{2} leq frac{3}{2} + elog_{2} e - (frac{1}{2} + e) log_{2} (1 + 2e)= frac{1}{2} - e + H(frac{1}{2} - e) - frac{1}{2}H(2e),wheree = lfloor (delta - 1)/2 rfloor /n, n rightarrow inftyandR_{1}resp.R_{2}is the rate of the codeCresp.D.

Published in:

Information Theory, IEEE Transactions on  (Volume:32 ,  Issue: 3 )