By Topic

Computational complexity of art gallery problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We study the computational complexity of the art gallery problem originally posed by Klee, and its variations. Specifically, the problem of determining the minimum number of vertex guards that can see an n -wall simply connected art gallery is shown to be NP-hard. The proof can be modified to show that the problems of determining the minimum number of edge guards and the minimum number of point guards in a simply connected polygonal region are also NP-hard. As a byproduct, the problem of decomposing a simple polygon into a minimum number of star-shaped polygons such that their union is the original polygon is also shown to be NP-hard.

Published in:

Information Theory, IEEE Transactions on  (Volume:32 ,  Issue: 2 )