System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

On filtered binary processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The problem of calculating the probability density function of the output of an RC filter driven by a binary random process with intervals generated by an equilibrium renewal process is studied. New integral equations, closely related to McFadden's original integral equations, are derived and solved by a matrix approximation method and by iteration. Transformations of the integral equations into differential equations are investigated and a new closed-form solution is obtained in one special case. Some numerical results that compare the matrix and iteration solutions with both exact solutions and approximate solutions based upon the Fokker-Planck equation are presented.

Published in:

Information Theory, IEEE Transactions on  (Volume:32 ,  Issue: 1 )