By Topic

On the minimum distance of cyclic codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The main result is a new lower bound for the minimum distance of cyclic codes that includes earlier bounds (i.e., BCH bound, HT bound, Roos bound). This bound is related to a second method for bounding the minimum distance of a cyclic code, which we call shifting. This method can be even stronger than the first one. For all binary cyclic codes of length < 63 (with two exceptions), we show that our methods yield the true minimum distance. The two exceptions at the end of our list are a code and its even-weight subcode. We treat several examples of cyclic codes of length \geq 63 .

Published in:

Information Theory, IEEE Transactions on  (Volume:32 ,  Issue: 1 )