By Topic

A new Laplace second-order autoregressive time-series model--NLAR(2)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A time-series model for Laplace (double-exponential) variables having second-order autoregressive structure (NLAR(2)) is presented. The model is Markovian and extends the second-order process in exponential variables, NEAR(2), to the case where the marginal distribution is Laplace. The properties of the Laplace distribution make it useful for modeling in some cases where the normal distribution is not appropriate. The time-series model has four parameters and is easily simulated. The autocorrelation function for the process is derived as well as third-order moments to further explore dependency in the process. The model can exhibit a broad range of positive and negative correlations and is partially time reversible. Joint distributions and the distribution of differences are presented for the first-order case NLAR(1).

Published in:

Information Theory, IEEE Transactions on  (Volume:31 ,  Issue: 5 )