By Topic

Rate-distortion performance of DPCM schemes for autoregressive sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Farvardin ; University of Maryland, College Park, MD, USA ; J. Modestino

An analysis of the rate-distortion performance of differential pulse code modulation (DPCM) schemes operating on discrete-time auto-regressive processes is presented. The approach uses an iterative algorithm for the design of the predictive quantizer subject to an entropy constraint on the output sequence. At each stage the iterative algorithm optimizes the quantizer structure, given the probability distribution of the prediction error, while simultaneously updating the distribution of the resulting prediction error. Different orthogonal expansions specifically matched to the source are used to express the prediction error density. A complete description of the algorithm, including convergence and uniqueness properties, is given. Results are presented for rate-distortion performance of the optimum DPCM scheme for first-order Gauss-Markov and Laplace-Markov sources, including comparisons with the corresponding rate-distortion bounds. Furthermore, asymptotic formulas indicating the high-rate performance of these schemes are developed for both first-order Gaussian and Laplacian autoregressive sources.

Published in:

IEEE Transactions on Information Theory  (Volume:31 ,  Issue: 3 )