Cart (Loading....) | Create Account
Close category search window

An algorithm for uniform vector quantizer design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A vector quantizer maps ak-dimensional vector into one of a finite set of output vectors or "points". Although certain lattices have been shown to have desirable properties for vector quantization applications, there are as yet no algorithms available in the quantization literature for building quantizers based on these lattices. An algorithm for designing vector quantizers based on the root latticesA_{n}, D_{n}, andE_{n}and their duals is presented. Also, a coding scheme that has general applicability to all vector quantizers is presented. A four-dimensional uniform vector quantizer is used to encode Laplacian and gamma-distributed sources at entropy rates of one and two bits/sample and is demonstrated to achieve performance that compares favorably with the rate distortion bound and other scalar and vector quantizers. Finally, an application using uniform four- and eight-dimensional vector quantizers for encoding the discrete cosine transform coefficients of an image at0.5bit/pel is presented, which visibly illustrates the performance advantage of vector quantization over scalar quantization.

Published in:

Information Theory, IEEE Transactions on  (Volume:30 ,  Issue: 6 )

Date of Publication:

Nov 1984

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.