Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Minimum Euclidean distance for combinations of short rate 1/2 convolutional codes and CPFSK modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Continuous phase frequency shift keying (CPFSK) is a constant amplitude modulation method with good spectral sidelobe properties. Good error probability properties can be obtained with coherent maximum-likelihood detection. In this paper we study the Euclidean distance properties of signals formed by a conventional rate 1/2 convolutional encoder followed by a binary or 4 -level CPFSK modulator. The minimum Euclidean distance is calculated for these signal sets as a function of the modulation index and the observation interval length. The optimum detector is discussed for rational modulation index values. The best obtainable codes are found for the case of short rate 1/2 codes with binary or 4 -level CPFSK modulation. Lists of the best codes are given. Among the results are that the noncatastrophic rate 1/2 convolutional codes with optimum free Hamming distance do not in general give the best Euclidean distance with CPFSK.

Published in:

Information Theory, IEEE Transactions on  (Volume:30 ,  Issue: 3 )