By Topic

Reducing the number of operations in certain finite- field transforms (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

It is shown how the use of relatively sparse polynomials, including p-polynomials and trace polynomials, can be used as intermediate divisors in the Goertzel transform over a finite field to reduce the number of additions. The number of multiplications can also be reduced if the characteristic of the field is larger than two. These methods can also be used in preliminary stages of a finite-field Winograd transform. Applications are for the decoding of Reed-Solomon and Bose-Chaudhuri-Hocquenghen codes in the spectral mode.

Published in:

Information Theory, IEEE Transactions on  (Volume:30 ,  Issue: 3 )