By Topic

Analysis of stochastic gradient algorithms for linear regression problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Parameter estimation problems that can be formulated as linear regressions are quite common in many applications. Recursive (on-line, sequential) estimation of such parameters can be performed using the recursive least squares (RLS) algorithm or a stochastic gradient version of this algorithm. In this paper the convergence properties of the gradient algorithm are analyzed under the assumption that the gain tends to zero. The technique is the same as the so-called ordinary differential equation approach, but the treatment here is self-contained and includes a proof of the boundedness of the estimates. A main result is that the convergence conditions for the gradient algorithm are the same as those for the recursive least squares algorithm.

Published in:

IEEE Transactions on Information Theory  (Volume:30 ,  Issue: 2 )