By Topic

On certain projective geometry codes (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

LetVbe an(n, k, d)binary projective geometry code withn = (q^{m}-1)/(q - 1), q = 2^{s}, andd geq [(q^{m-r}-1)/(q - 1)] + 1. This code isr-step majority-logic decodable. With reference to the GF(q^{m}) = {0, 1, alpha , alpha^{2} , cdots , alpha^{n(q-1)-1} }, the generator polynomialg(X), ofV, hasalpha^{nu}as a root if and only ifnuhas the formnu = i(q - 1)andmax_{0 leq l < s} W_{q}(2^{l} nu) leq (m - r - 1)(q - 1), whereW_{q}(x)indicates the weight of the radix-qrepresentation of the numberx. LetSbe the set of nonzero numbersnu, such thatalpha^{nu}is a root ofg(X). LetC_{1}, C_{2}, cdots, C_{nu}be the cyclotomic cosets such thatSis the union of these cosets. It is clear that the process of findingg(X)becomes simpler if we can find a representative from eachC_{i}, since we can then refer to a table, of irreducible factors, as given by, say, Peterson and Weldon. In this correspondence it was determined that the coset representatives for the cases ofm-r = 2, withs = 2, 3, andm-r=3, withs=2.

Published in:

Information Theory, IEEE Transactions on  (Volume:30 ,  Issue: 2 )