By Topic

Some NP-hard polygon decomposition problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The inherent computational complexity of polygon decomposition problems is of theoretical interest to researchers in the field of computational geometry and of practical interest to those working in syntactic pattern recognition. Three polygon decomposition problems are shown to be NP-hard and thus unlikely to admit efficient algorithms. The problems are to find minimum decompositions of a polygonal region into (perhaps overlapping) convex, star-shaped, or spiral subsets. We permit the polygonal region to contain holes. The proofs are by transformation from Boolean three-satisfiability, a known NP-complete problem. Several open problems are discussed.

Published in:

Information Theory, IEEE Transactions on  (Volume:29 ,  Issue: 2 )