By Topic

The joint estimation of differential delay, Doppler, and phase (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

In radio and sonar applications it sometimes happens that narrow-band signals, originated from a remote source and observed at a pair of receivers, differ by unknown differential phase and Doppler shift in addition to the differential delay corresponding to the range difference. The correspondence presents the joint maximum likelihood (ML) estimate of the differential delay, Doppler, and phase and examines their accuracy by deriving the Cramér-Rao bound. It is shown that the joint ML estimators are the values of the delay and Doppler that maximize the magnitude of a generalized ambiguity function analogous to the one used in radar. It is also shown that for long observation time and high enough signal-to-noise ratio there is no degradation in the accuracy of the time-delay estimator due to the additional phase and Doppler uncertainty and that the differential Doppler is uncorrelated with the differential delay and phase estimators.

Published in:

IEEE Transactions on Information Theory  (Volume:28 ,  Issue: 5 )