By Topic

Global identification of continuous-time-systems with unknown noise covariance (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Global convergence pf the maximum likelihood estimates of unknown parameters of a continuous-time stochastic linear dynamical system is investigated when the observation noise covariance is unknown. The unknown parameter set is assumed to be finite. The situation where the true parameter does not belong to the unknown parameter set is considered as well as the situation where the true model is included in the unknown parameter set. Convergence is proved under a certain sufficient condition called the identifiability condition.

Published in:

Information Theory, IEEE Transactions on  (Volume:28 ,  Issue: 3 )