By Topic

Higher dimensional orthogonal designs and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The concept of orthogonal design is extended to higher dimensions. A properg-dimensional design[d_{ijk cdots upsilon}]is defined as one in which all parallel(g-1)-dimensional layers, in any orientation parallel to a hyper plane, are uncorrelated. This is equivalent to the requirement thatd_{ijk cdots upsilon} in {0, pm x_{1}, cdots , pm x_{t} }, wherex_{1}, cdots , x_{t}are commuting variables, and thatsum_{p} sum_{q} sum_{r} cdots sum_{y} d_{pqr cdots ya} d_{pqr cdots yb} = left( sum_{t} s_{i}x_{i}^{2} right)^{g-1} delta ab,where(s{1}, cdots , s{t})are integers giving the occurrences ofpm x_{1}, cdots , pm x_{t}in each row and column (this is called the type(s_{1}, cdot ,s_{t})^{g-1})and(pqr cdots yz)represents all permutations of(ijk cdots upsilon). This extends an idea of Paul J. Shlichta, whose higher dimensional Hadamard matrices are special cases withx_{1}, cdots , x_{t} in {1,- 1}, (s_{1}, cdots, s_{t})=(g), and(sum_{t}s_{i}x_{i}^{2})=g. Another special case is higher dimensional weighing matrices of type(k)^{g}, which havex_{1}, cdots , x_{t} in {0,1,- 1}, (s_{1}, cdots, s_{t})=(k), and(sum_{t}s_{i}x_{i}^{2})=k. Shlichta found properg-dimensional Hadamard matrices of size(2^{t})^{g}. Proper orthogonal designs of type

Published in:

Information Theory, IEEE Transactions on  (Volume:27 ,  Issue: 6 )