Cart (Loading....) | Create Account
Close category search window
 

A method for proving multiterminal source coding theorems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The two-step method used by Wyner and Ziv to prove the Wyner-Ziv theorem is extended to prove sliding-block source coding theorems for coding a general finite-alphabet ergodic multiterminal source with respect to a single-letter fidelity criterion. The first step replaces every stochastic encoding in the network by a deterministic sliding-block encoding. The second step involves using the Slepian-Wolf theorem to adjust the sliding-block encodings so that they will have the desired rate. while introducing little additional distortion. The method is applied to give quick proofs of sliding-block versions of theorems of Berger, Kaspi, and Tung. Since the method obtains sliding-block coders directly without first obtaining block coders, the block coding results can be obtained as an easy corollary. The direct methods for proving results on block coding are more difficult and do not imply the corresponding results on sliding-block coding. Indeed, in the multiterminal case it is, in general, not known how to construct good sliding-block coders from good block coders.

Published in:

Information Theory, IEEE Transactions on  (Volume:27 ,  Issue: 5 )

Date of Publication:

Sep 1981

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.