By Topic

A two-dimensional maximum entropy spectral estimator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Using ideas from one-dimensional maximum entropy spectral estimation a two-dimensional spectral estimator is derived by extrapolating the two-dimensional sampled autocorrelation (or covariance) function. The method used maximizes the entropy of a set of random variables. The extrapolation (or prediction) process under this maximum entropy condition is shown to correspond to the most random extension or equivalently to the maximization of the mean-square prediction error when the optimum predictor is used. The two-dimensional extrapolation must he terminated by the investigator. The Fourier transform of the extrapolated autocorrelation function is the two-dimensional spectral estimator. Using this method one can apply windowing prior to calculating the spectral estimate. A specific algorithm for estimating the two-dimensional spectrum is presented, and its computational complexity is estimated. The algorithm has been programmed and computer examples are presented.

Published in:

Information Theory, IEEE Transactions on  (Volume:26 ,  Issue: 5 )