Cart (Loading....) | Create Account
Close category search window

Optimal encoding of discrete-time continuous-amplitude memoryless sources with finite output alphabets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A rate-distortion theory is introduced for the optimal encoding of stationary memoryless continuous-amplitude sources with a single-letter distortion measure and reproduction alphabets of a given finite size. The theory arises from a judicious approximation of the original continuous-input discrete-output problem by one with discrete input and output. A size-constrained output alphabet rate-distortion function is defined, its coding significance is established by coding theorems, and a convergent algorithm is presented for its evaluation. The theory is applied to Gaussian sources with squared-error distortion measure. Using the algorithm for the calculation of the new rate-distortion function in this case establishes the existence of codes which attain almost any desired rate between the rate-distortion bound and the optimum entropy-coded quantizer. Furthermore, one can closely approach the rate-distortion limit with a surprisingly small number of output levels. The calculation furnishes optimal output levels, output level probabilities, and other parameters necessary for a trellis coding simulation. The search algorithm represents the first use for asymmetric sources and distortion measures of a variation of a single stack algorithm proposed by Gallager. Carrying out the simulation at a rate of 1 bit per source symbol, codes are found with 4 and 64 output levels which attain distortions smaller than that of an optimum quantizer and close to the rate-distortion bound. Furthermore, these codes attain comparable or better performance with far less search effort than previous attempts with a continuous output alphabet.

Published in:

Information Theory, IEEE Transactions on  (Volume:26 ,  Issue: 2 )

Date of Publication:

Mar 1980

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.