By Topic

Final prediction error and final interpolation error: A paradox? (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

It is well-known in the theory of stationary stochastic process) that, given the true spectrum and subject to general conditions, the linear least squares predictor (i.e., extrapolator) has an error variance not smaller than the error variance of the linear least squares interpolator. It is then perhaps natural to expect that the same results would hold when the true spectrum is unknown, but can be estimated from data. In this correspondence the fallacy of this expectation is exposed by carefully analyzing a simple situation. The seemingly paradoxical phenomenon is further demonstrated by some simulation results. We conclude with a heuristic explanation.

Published in:

Information Theory, IEEE Transactions on  (Volume:25 ,  Issue: 6 )