By Topic

Symmetries of binary Goppa codes (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

It is known that extended Goppa cedes are invariant under the group of transformations Z \rightarrow (A Z + B ) / ( CZ + D ) , with A D + BC \neq 0 . This invariance is used here to classify cubic and quartic irreducible Goppa codes and to investigate their symmetry groups. A computer has been used to determine the actual group of the codes of length 33 (for cubics and quarries). It has been said, concerning the trends in symmetry groups with respect to the Gilbert bound, that "a good family of codes can be linear or have many symmetries, hut not both" [8]. The groups found here are rather small; and so the results reinforce that statement.

Published in:

IEEE Transactions on Information Theory  (Volume:25 ,  Issue: 5 )