By Topic

Single-Threshold Detection of a Random Signal in Noise with Multiple Independent Observations,Part 2:Continuous Case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A single-threshold detector is derived for a wide class of classical binary decision problems involving the likelihood-ratio detection of a signal embedded in noise. The class of problems considered encompasses the case of multiple independent (but not necessarily identically distributed) observations of a nonnegative (or nonpositive) signal embedded in additive and independent noise, where the range of the signal and noise is continuous. It is shown that a comparison of the sum of the observations with a unique threshold comprises an optimum detector if a weak condition on the noise is satisfied independent of the signal. Examples of noise densities that satisfy and that violate this condition are presented. A sufficient condition on the likelihood ratio which implies that the sum of the observations is also a sufficient statistic is considered.

Published in:

Information Theory, IEEE Transactions on  (Volume:25 ,  Issue: 2 )