Cart (Loading....) | Create Account
Close category search window
 

On the Shannon capacity of a graph

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

It is proved that the Shannon zero-error capacity of the pentagon issqrt{5}. The method is then generalized to obtain upper bounds on the capacity of an arbitrary graph. A well-characterized, and in a sense easily computable, function is introduced which bounds the capacity from above and equals the capacity in a large number of cases. Several results are obtained on the capacity of special graphs; for example, the Petersen graph has capacity four and a self-complementary graph with n points and with a vertex-transitive automorphism group has capacitysqrt{5}.

Published in:

Information Theory, IEEE Transactions on  (Volume:25 ,  Issue: 1 )

Date of Publication:

Jan 1979

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.