By Topic

Source coding of the discrete Fourier transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Distortion-rate theory is used to derive absolute performance bounds and encoding guidelines for direct fixed-rate minimum mean-square error data compression of the discrete Fourier transform (DFT) of a stationary real or circularly complex sequence. Both real-part-imaginary-part and magnitude-phase-angle encoding are treated. General source coding theorems are proved in order to justify using the optimal test channel transition probability distribution for allocating the information rate among the DFT coefficients and for calculating arbitrary performance measures on actual optimal codes. This technique has yielded a theoretical measure of the relative importance of phase angle over the magnitude in magnitude-phase-angle data compression. The result is that the phase angle must be encoded with 0.954 nats, or 1.37 bits, more rate than the magnitude for rates exceeding 3.0 nats per complex element. This result and the optimal error bounds are compared to empirical results for efficient quantization schemes.

Published in:

IEEE Transactions on Information Theory  (Volume:24 ,  Issue: 6 )