Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Compression of individual sequences via variable-rate coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Compressibility of individual sequences by the class of generalized finite-state information-lossless encoders is investigated. These encoders can operate in a variable-rate mode as well as a fixed-rate one, and they allow for any finite-state scheme of variable-length-to-variable-length coding. For every individual infinite sequence x a quantity \rho(x) is defined, called the compressibility of x , which is shown to be the asymptotically attainable lower bound on the compression ratio that can be achieved for x by any finite-state encoder. This is demonstrated by means of a constructive coding theorem and its converse that, apart from their asymptotic significance, also provide useful performance criteria for finite and practical data-compression tasks. The proposed concept of compressibility is also shown to play a role analogous to that of entropy in classical information theory where one deals with probabilistic ensembles of sequences rather than with individual sequences. While the definition of \rho(x) allows a different machine for each different sequence to be compressed, the constructive coding theorem leads to a universal algorithm that is asymptotically optimal for all sequences.

Published in:

Information Theory, IEEE Transactions on  (Volume:24 ,  Issue: 5 )